Jak zjistit obor hodnot funkce?

Jak vypočítat hodnotu funkce

Hodnota závisle proměnné je (pro danou funkci) jednoznačně určena hodnotou x – proto 'závisle' proměnná. O funkcích f a g řekneme, že jsou si rovny v případě, že jsou totožné definiční obory D(f)=D(g) a zároveň pro všechna x z definičního oboru jsou si rovny funkční hodnoty f(x)=g(x).

Jak se počítá definiční obor funkce

Funkce přiřazuje vstupům výstupy. Definiční obor funkce nám udává, co všechno do funkce můžeme dosadit. Například definiční obor funkce f(x)=x² jsou všechna reálná čísla a definiční obor funkce g(x)=1/x jsou všechna reálná čísla kromě x=0. Existují ale také speciální funkce, jejichž definiční obory jsou omezenější.

Jak poznat že je funkce omezená

Ekvivalentně, funkce f je omezená jestliže existuje číslo h takové, že pro všechna x z definičního oboru D( f ) platí -h ≤ f (x) ≤ h, jinými slovy | f (x)| ≤ h. Omezenost shora znamená, že existuje vodorovná čára tak, že celý graf funkce leží pod ní.
Archiv

Jak poznat co je funkce

Funkce je předpis, který každému číslu x z definičního oboru M přiřadí právě jedno y z oboru hodnot N. Funkci obvykle zapisujeme ve tvaru y = f(x), či ji můžeme vyjádřit explicitně f:y = x kde proměnná x je argument funkce.
Archiv

Co je f x

Značení y = f (x) znamená, že k hodnotě argumentu x přiřazuje funkce f hodnotu y. Někdy se také používá značení f : x ↦ y, slovy, funkce f posílá x na y. Nejobvyklejší způsob, jak zadat toto přiřazování, je pomocí nějakého vzorce, tj.

Jak zjistit jestli je funkce prostá

Jestliže funkce f nabývá pro každé dva různé argumenty různé funkční hodnoty, pak tuto funkci nazýváme prostou.

Jak se dělá obor hodnot

Obor hodnot je naopak množina všech reálných čísel y, která dostaneme jako výstupní hodnotu funkce f, jestliže za x dosadíme všechny přípustné hodnoty z D(f). Obor hodnot funkce f značíme H(f). Máme dán předpis funkce f:y=x^2, D(f)=\langle -2,2\rangle.

Co je to definiční obor a obor hodnot

Definiční obor funkce je množina všech hodnot (čísel), kterých může proměnná x nabývat. Definiční obor funkce, kterou si pojmenujeme f, budeme značit D(f). Kdybychom si funkci pojmenovali jinak, například brrr, tak její definiční obor budeme značit D(brrr).

Jak zjistím jestli je funkce sudá nebo lichá

Funkce sudá a lichá

Jestliže je graf osově souměrný podle osy y, pak se jedná o funkci sudou. V případě, že je graf funkce středově souměrný podle počátku soustavy souřadnic, pak se jedná o funkci lichou.

Kdy to není funkce

U funkce to bude vždycky 1 výstup, 1 prvek z oboru hodnot, který se váže na ten prvek z definičního oboru. Pokud bychom měli jeden prvek z definičního oboru, ten bychom vložili do krabičky, která má být funkcí, a dostali bychom ne 1 prvek z oboru hodnot, ale nějaké y, nějaké z, nějaké e, tak toto není funkce.

Jak poznat jestli je funkce sudá nebo lichá

Funkce sudá a lichá

Jestliže je graf osově souměrný podle osy y, pak se jedná o funkci sudou. V případě, že je graf funkce středově souměrný podle počátku soustavy souřadnic, pak se jedná o funkci lichou.

Jak poznat definiční obor

Definiční obor můžeme vyčíst i z grafu funkce. Pro příklad si vezmeme graf předchozí funkce f(x) = 1/x. Pokud si promítnete graf na osu x, získáte definiční obor. Pokud bod x není prvkem definičního oboru, tak pokud uděláte v tomto bodě svislou kolmici k ose x, tak tato přímka neprotne žádný bod grafu.

Jak udělat obor hodnot

Obor hodnot je naopak množina všech reálných čísel y, která dostaneme jako výstupní hodnotu funkce f, jestliže za x dosadíme všechny přípustné hodnoty z D(f). Obor hodnot funkce f značíme H(f). Máme dán předpis funkce f:y=x^2, D(f)=\langle -2,2\rangle.

Jak se počítají lineární funkce

Lineární funkce je dána předpisem y = ax + b (a a b jsou reálná čísla). Grafem je přímka, která prochází body o souřadnicích [0; b], [1; a + b]. Pokud je a > 0 – funkce je rostoucí. Pokud je a < 0 – funkce je klesající.

Jak vypočítat inverzní funkci

Předpis inverzní funkce získáme tak, že se pokusíme vyjádřit x jako funkci argumentu y. Inverzní funkce k prosté funkci f je funkce f^{-1}, pro kterou platí: D(f^{-1})=H(f) a zároveň každému y\in D(f^{-1}) je přiřazeno právě to x\in D(f), pro které je f(x)=y.

Jak se značí funkce

Obvykle ji značíme y nebo f(x). Jiný název pro argument funkce. Nezávislost je dána tím, že její hodnotu můžeme libovolně měnit (v rámci množiny D). Takto také nazýváme funkční hodnotu.

Co plati pro lichou funkcí

Definice 1.4 (parita funkce). Nechť funkce f splňuje následující podmínku: x∈D(x)⇒(−x)∈D(f). Řekneme, že funkce f je sudá pokud platí f(−x)=f(x). Řekneme, že funkce f je lichá pokud platí f(−x)=−f(x).

Co plati pro sudou funkci

Sudost. Funkce je sudá, pokud splňuje jednoduché pravidlo — když do funkce vložíte prvek x a poté inverzní prvek −x, pak musí funkce vrátit stejnou výslednou hodnotu. Typickou sudou funkcí je funkce f(x) = x2. Pokud ji zavoláte s argumenty 6 a −6, získáte: f(6) = 36 a f(−6) = 36.

Co je definiční obor lineární funkce

Definiční obor lineární funkce je celá množina reálných čísel. Speciálním případem lineární funkce je funkce konstantní.

Jak vypada lineární funkce

Toto slovo pochází z latinského linea, což označuje čáru nebo přímku. Grafem lineární funkce tedy bude přímka. Předpis lineární funkce je f:y=ax+b. Pomocí koeficientů a a b můžeme ovlivnit vzhled grafu lineární funkce, jestli bude funkce rostoucí, nebo klesající a kde graf protne osu y.

Co to je inverzní funkce

Inverzní funkce f -1 je symetrická vůči funkci f podle osy prvního a třetího kvadrantu souřadnicového systému. Protože měním proměnnou x za y, tak se automaticky definiční obor funkce f stává oborem hodnot inverzní funkce f -1 a obor hodnot funkce f se stává definičním oborem inverzní funkce f -1.

Jak vysvětlit funkce

Nyní si můžeme funkci zavést přesnou definicí: "Funkce je předpis, který každému x z definičního oboru přiřazuje právě jednu funkční hodnotu y." Pro definici funkce je velmi důležitá část, kdy jednomu x přiřazujeme pouze jednu funkční hodnotu.

Jak určit periodu

Perioda je vodorovná řada v periodické tabulce prvků. Značí se čísly 1 až 7 či písmeny K až Q. Jednotlivé chemické prvky jsou v periodách tabulky řazeny vzestupně podle hodnoty protonového čísla.

Kdy je funkce klesající

Funkce je klesající tehdy, když s rostoucí hodnotou x klesá hodnota y. Funkce f je klesající, právě když pro všechna x_1,x_2\in D(f) platí: Je-li x_1 < x_2, pak f(x_1) > f(x_2).

Jak zjistit že je funkce prostá

Jestliže funkce f nabývá pro každé dva různé argumenty různé funkční hodnoty, pak tuto funkci nazýváme prostou.